Guide RNA

Amy Heidersbach
BMS 265
5/7/09
What is Insertion/Deletion RNA Editing?

- The addition or deletion of U residues from a pre mRNA transcript.

- Unedited mRNA: A G

- Edited mRNA: A U G

- Unique to the mitochondrial genome of Kinetoplastid Trypanosomes

- Usually necessary for a functional open reading frame
Major Transcript of the Frameshifted coxl Gene from Trypanosome Mitochondria Contains Four Nucleotides That Are Not Encoded in the DNA

A Model for RNA Editing in Kinetoplastid Mitochondria: “Guide” RNA Molecules Transcribed from Maxicircle DNA Provide the Edited Information
What is a gRNA?

- 50-70 nt RNA species containing a 5’ triphosphate and 3’ poly U tail

- “Characteristic” double hairpin motif.
 (Schmid et. Al. 1995)

- Largely encoded by the minicircles of the Kinetoplastid mitochondrial genome.
gRNA Biogenesis
transcription from minicircles

Grams et al. 2001

gRNA polycistron

3’ transcribed gRNAs are degraded
gRNA Biogenesis
Addition of a U Tail

PPP gRNA KRET1
gRNA
Mechanism of Action

1. gRNA/pre-mRNA binding

2. pre-mRNA cleavage

3a. U insertion via TUTase action

3b. U deletion via ExoUase action

4. Re-ligation of mRNA fragments
1. gRNA/pre-mRNA binding

Poly U tail

3' UUUU

| *** |

5' ACCAGGGA

MRP1/2

Anchor

CUGGUCN_{10} 5' gRNA

| | | | |

GACCGG 3' Pre-mRNA
2. Pre-mRNA Cleavage

Poly U tail acts to tether the cleaved fragments of the pre-mRNA together.

20S Editosome

Endonuclease?

Cleavage site at first unpaired nucleotide of the pre-mRNA target.
3a. U insertion

TUTase will add Uridylates to the 3’ end of the 5’ fragment

\[\text{3’} \text{UUUUUU} \quad \text{AAGGA} \quad \text{U–UAUAUACUGGGUC} \quad \text{N}_{10} \quad \text{5’} \text{gRNA}\]
\[\text{5’} \text{ACCAGGGAA} \quad \text{AUAUAUGACCGG} \quad \text{3’Pre-mRNA}\]

U
3a. U insertion

U addition/deletion results in pairing of gRNA template to mRNA through Watson-Crick and G:U base pairing.
3b. U Deletion

20S Editosome

5′ ACCAGGGAAU

3′ UUUUUU

| *** |

CUGGUCN_{10} 5′ gRNA

5′ gRNA

3′ Pre-mRNA

ExoUase removes unpaired U
4. Ligation

3' UUUUUUUAAGGA-U-UAUAUACUGGGUCN_{10} 5' gRNA

5' ACCAGGGAAUUUUUUAUUAUAUGACCAG 3' Pre-mRNA
4. Ligation

3’ UUUU....UAUGACCAG 5’
gRNA

5’ ACCAGGGAGUACUGGUUCN10 5’
Pre-mRNA

20S Editosome
Ligase
1. gRNA/pre-mRNA binding

Editing proceeds 3’ to 5’ along the pre-mRNA
<table>
<thead>
<tr>
<th>New Nomenclature</th>
<th>Alternate Names</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>KREPA1</td>
<td>TbMP81/ LC-1/ Band II</td>
<td></td>
</tr>
<tr>
<td>KREPA2</td>
<td>TbMP63/ LC-4/ Band III</td>
<td></td>
</tr>
<tr>
<td>KREPA3</td>
<td>TbMP42/ LC-7b/ Band VI</td>
<td></td>
</tr>
<tr>
<td>KREPA4</td>
<td>TbMP24/ LC-10/ Band VI</td>
<td></td>
</tr>
<tr>
<td>KREPA5</td>
<td>TbMP19</td>
<td></td>
</tr>
<tr>
<td>KREPA6</td>
<td>TbMP18/ LC-11/ Band VII</td>
<td></td>
</tr>
<tr>
<td>KREPB1</td>
<td>TbMP90</td>
<td></td>
</tr>
<tr>
<td>KREPB2</td>
<td>TbMP67</td>
<td></td>
</tr>
<tr>
<td>KREPB3</td>
<td>TbMP61/ LC-6a</td>
<td>Editing complex</td>
</tr>
<tr>
<td>KREPB4</td>
<td>TbMP46/ LC-5</td>
<td></td>
</tr>
<tr>
<td>KREPB5</td>
<td>TbMP44/ LC-8</td>
<td></td>
</tr>
<tr>
<td>KREPB6</td>
<td>TbMP49/ LC-7c</td>
<td></td>
</tr>
<tr>
<td>KREPB7</td>
<td>TbMP47</td>
<td></td>
</tr>
<tr>
<td>KREPB8</td>
<td>TbMP41</td>
<td></td>
</tr>
<tr>
<td>KREPC1</td>
<td>KREX1/ REX1/ TbMP100/ LC-2/</td>
<td></td>
</tr>
<tr>
<td>KREPC2</td>
<td>KREX2/ REX2/ TbMP99/ LC-3/ Band I</td>
<td></td>
</tr>
<tr>
<td>KREL1</td>
<td>REL1/TbMP52/ LC-7a/ Band IV</td>
<td></td>
</tr>
<tr>
<td>KREL2</td>
<td>REL2/TbMP48/ LC-9/ Band V</td>
<td></td>
</tr>
<tr>
<td>KRET2</td>
<td>RET2/TbMP57/ LC-6b</td>
<td></td>
</tr>
<tr>
<td>KREH1</td>
<td>mHel61p</td>
<td></td>
</tr>
<tr>
<td>KRET1</td>
<td>RET1/ 3’ TUTase</td>
<td>Adds polyU tail to gRNA</td>
</tr>
<tr>
<td>MRP1</td>
<td>TbgBP21/ Ltp28/ CfgBP29</td>
<td>Assists gRNA/premRNA binding</td>
</tr>
<tr>
<td>MRP2</td>
<td>TbgBP25/ Ltp26/ CfgBP27</td>
<td></td>
</tr>
<tr>
<td>RBP16</td>
<td>RBP16</td>
<td>binds gRNA and regulates gRNA utilization</td>
</tr>
</tbody>
</table>

Stuart et al. TRENDS. 2005
gRNA other stuff

Example members
http://rna.bmb.uga.edu/kiss/
http://dna.kdna.ucla.edu/trypanosome/database.html

Role in human Disease
gRNA’s are non pathogenic but they are critical to the survival of the Trypanosome.

Potential as a Tool
Maybe, if you study Trypanosomes
Thanks!